Page de couverture de Algorithms for the People

Algorithms for the People

Democracy in the Age of AI

Aperçu

Essayer pour 0,00 $
Choisissez 1 livre audio par mois dans notre incomparable catalogue.
Écoutez à volonté des milliers de livres audio, de livres originaux et de balados.
L'abonnement Premium Plus se renouvelle automatiquement au tarif de 14,95 $/mois + taxes applicables après 30 jours. Annulation possible à tout moment.

Algorithms for the People

Auteur(s): Josh Simons
Narrateur(s): Teri Schnaubelt
Essayer pour 0,00 $

14,95$ par mois après 30 jours. Annulable en tout temps.

Acheter pour 30,25 $

Acheter pour 30,25 $

Confirmer l'achat
Payer avec la carte finissant par
En confirmant votre achat, vous acceptez les conditions d'utilisation d'Audible et la déclaration de confidentialité d'Amazon. Des taxes peuvent s'appliquer.
Annuler

À propos de cet audio

This audiobook narrated by Teri Schnaubelt explains how to put democracy at the heart of AI governance

Artificial intelligence and machine learning are reshaping our world. Police forces use them to decide where to send police officers, judges to decide whom to release on bail, welfare agencies to decide which children are at risk of abuse, and Facebook and Google to rank content and distribute ads. In these spheres, and many others, powerful prediction tools are changing how decisions are made, narrowing opportunities for the exercise of judgment, empathy, and creativity. In Algorithms for the People, Josh Simons flips the narrative about how we govern these technologies. Instead of examining the impact of technology on democracy, he explores how to put democracy at the heart of AI governance.

Drawing on his experience as a research fellow at Harvard University, a visiting research scientist on Facebook’s Responsible AI team, and a policy advisor to the UK’s Labour Party, Simons gets under the hood of predictive technologies, offering an accessible account of how they work, why they matter, and how to regulate the institutions that build and use them.

He argues that prediction is political: human choices about how to design and use predictive tools shape their effects. Approaching predictive technologies through the lens of political theory casts new light on how democracies should govern political choices made outside the sphere of representative politics. Showing the connection between technology regulation and democratic reform, Simons argues that we must go beyond conventional theorizing of AI ethics to wrestle with fundamental moral and political questions about how the governance of technology can support the flourishing of democracy.

PLEASE NOTE: When you purchase this title, the accompanying PDF will be available in your Audible Library along with the audio.

©2023 Princeton University Press (P)2023 Princeton University Press
Informatique Politiques publiques Politics Democracy Technology
activate_Holiday_promo_in_buybox_DT_T2

Ce que les critiques en disent

“A timely, thought-provoking, and distinct contribution to a fast-growing and crowded debate. It does an admirable job of bridging several disciplinary divides while maintaining a clear perspective.”—Reuben Binns, University of Oxford
“A sophisticated, politically, technologically, and economically informed manifesto for how to regulate big tech.”—John Zerilli, University of Oxford, author of A Citizen’s Guide to Artificial Intelligence

“If you have any concerns about the growing and pervasive impact of algorithms on society—and you should be concerned about how machine learning tools amplify and perpetuate unfairness, surveillance, and distrust—this is the book you need. Cogent and wise, bridging computer science, law and politics, it reveals human choices within machine learning used by public and private bureaucracies and dominant social media. And it identifies feasible approaches to reclaim accountability and public good.”—Martha Minow, Harvard University, author of When Should Law Forgive?

Ce que les auditeurs disent de Algorithms for the People

Moyenne des évaluations de clients

Évaluations – Cliquez sur les onglets pour changer la source des évaluations.