Page de couverture de Big Data: Principles and Best Practices of Scalable Realtime Data Systems

Big Data: Principles and Best Practices of Scalable Realtime Data Systems

Aperçu

Essayer pour 0,00 $
Choisissez 1 livre audio par mois dans notre incomparable catalogue.
Écoutez à volonté des milliers de livres audio, de livres originaux et de balados.
L'abonnement Premium Plus se renouvelle automatiquement au tarif de 14,95 $/mois + taxes applicables après 30 jours. Annulation possible à tout moment.

Big Data: Principles and Best Practices of Scalable Realtime Data Systems

Auteur(s): Nathan Marz, James Warren
Narrateur(s): Mark Thomas, Chris Penick
Essayer pour 0,00 $

14,95$ par mois après 30 jours. Annulable en tout temps.

Acheter pour 25,00 $

Acheter pour 25,00 $

Confirmer l'achat
Payer avec la carte finissant par
En confirmant votre achat, vous acceptez les conditions d'utilisation d'Audible et la déclaration de confidentialité d'Amazon. Des taxes peuvent s'appliquer.
Annuler

À propos de cet audio

Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases.

Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive.

This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful.

What's inside:

  • Introduction to big data systems
  • Real-time processing of web-scale data
  • Tools like Hadoop, Cassandra, and Storm
  • Extensions to traditional database skills

About the authors: Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing.

PLEASE NOTE: When you purchase this title, the accompanying PDF will be available in your Audible Library along with the audio.

©2015 Manning Publications (P)2015 Manning Publications
Informatique Programmation et développement de logiciels Science des données Apprentissage automatique Logiciel Développement de logiciels Architecture Programmation
activate_Holiday_promo_in_buybox_DT_T2

Ce que les auditeurs disent de Big Data: Principles and Best Practices of Scalable Realtime Data Systems

Moyenne des évaluations de clients

Évaluations – Cliquez sur les onglets pour changer la source des évaluations.