Page de couverture de Designing Machine Learning Systems

Designing Machine Learning Systems

An Iterative Process for Production-Ready Applications

Précommander avec l'essai gratuit
Choisissez 1 livre audio par mois dans notre incomparable catalogue.
Écoutez à volonté des milliers de livres audio, de livres originaux et de balados.
L'abonnement Premium Plus se renouvelle automatiquement au tarif de 14,95 $/mois + taxes applicables après 30 jours. Annulation possible à tout moment.

Designing Machine Learning Systems

Auteur(s): Chip Huyen
Narrateur(s): Kathleen Li
Précommander avec l'essai gratuit

14,95$ par mois après 30 jours. Annulable en tout temps.

Précommander pour 21,92 $

Précommander pour 21,92 $

Confirmer la précommande
Payer avec la carte finissant par
En confirmant votre achat, vous acceptez les conditions d'utilisation d'Audible et la déclaration de confidentialité d'Amazon. Des taxes peuvent s'appliquer.
Annuler

À propos de cet audio

Machine learning systems are both complex and unique. Complex because they consist of many different components and involve many different stakeholders. Unique because they're data dependent, with data varying wildly from one use case to the next. In this book, you'll learn a holistic approach to designing ML systems that are reliable, scalable, maintainable, and adaptive to changing environments and business requirements.

Author Chip Huyen, cofounder of Claypot AI, considers each design decision—such as how to process and create training data, which features to use, how often to retrain models, and what to monitor—in the context of how it can help your system as a whole achieve its objectives. The iterative framework in this book uses actual case studies backed by ample references.

This book will help you tackle scenarios such as engineering data and choosing the right metrics to solve a business problem; automating the process for continually developing, evaluating, deploying, and updating models; developing a monitoring system to quickly detect and address issues your models might encounter in production; architecting an ML platform that serves across use cases; and developing responsible ML systems.

©2022 Huyen Thi Khanh Nguyen (P)2025 Ascent Audio
Informatique

Ce que les auditeurs disent de Designing Machine Learning Systems

Moyenne des évaluations de clients

Évaluations – Cliquez sur les onglets pour changer la source des évaluations.