Page de couverture de Graph-Powered Machine Learning

Graph-Powered Machine Learning

Aperçu

Essayer pour 0,00 $
Choisissez 1 livre audio par mois dans notre incomparable catalogue.
Écoutez à volonté des milliers de livres audio, de livres originaux et de balados.
L'abonnement Premium Plus se renouvelle automatiquement au tarif de 14,95 $/mois + taxes applicables après 30 jours. Annulation possible à tout moment.

Graph-Powered Machine Learning

Auteur(s): Alessandro Negro
Narrateur(s): Julie Brierley
Essayer pour 0,00 $

14,95$ par mois après 30 jours. Annulable en tout temps.

Acheter pour 31,26 $

Acheter pour 31,26 $

Confirmer l'achat
Payer avec la carte finissant par
En confirmant votre achat, vous acceptez les conditions d'utilisation d'Audible et la déclaration de confidentialité d'Amazon. Des taxes peuvent s'appliquer.
Annuler

À propos de cet audio

Upgrade your machine learning models with graph-based algorithms, the perfect structure for complex and interlinked data.

In Graph-Powered Machine Learning, you will learn:

  • The lifecycle of a machine learning project
  • Graphs in big data platforms
  • Data source modeling using graphs
  • Graph-based natural language processing, recommendations, and fraud detection techniques
  • Graph algorithms
  • Working with Neo4J

Graph-Powered Machine Learning teaches to use graph-based algorithms and data organization strategies to develop superior machine learning applications. You’ll dive into the role of graphs in machine learning and big data platforms, and take an in-depth look at data source modeling, algorithm design, recommendations, and fraud detection. Explore end-to-end projects that illustrate architectures and help you optimize with best design practices.

Author Alessandro Negro’s extensive experience shines through in every chapter, as you learn from examples and concrete scenarios based on his work with real clients!

About the Technology

Identifying relationships is the foundation of machine learning. By recognizing and analyzing the connections in your data, graph-centric algorithms like K-nearest neighbor or PageRank radically improve the effectiveness of ML applications.

About the Audiobook

Graph-Powered Machine Learning teaches you how to exploit the natural relationships in structured and unstructured datasets using graph-oriented machine learning algorithms and tools. In this authoritative audiobook, you’ll master the architectures and design practices of graphs, and avoid common pitfalls. Author Alessandro Negro explores examples from real-world applications that connect GraphML concepts to real world tasks.

About the Author

Alessandro Negro is the chief scientist at GraphAware. He has been a speaker at many conferences, and holds a PhD in Computer Science.

PLEASE NOTE: When you purchase this title, the accompanying PDF will be available in your Audible Library along with the audio.

©2021 Manning Publications (P)2022 Manning Publications
Science des données Apprentissage automatique Architecture

Ce que les auditeurs disent de Graph-Powered Machine Learning

Moyenne des évaluations de clients

Évaluations – Cliquez sur les onglets pour changer la source des évaluations.