Gratuit avec l'essai de 30 jours
-
Practical Data Science with R
- Narrateur(s): Josef Gagnier
- Durée: 8 h et 10 min
Échec de l'ajout au panier.
Échec de l'ajout à la liste d'envies.
Échec de la suppression de la liste d’envies.
Échec du suivi du balado
Ne plus suivre le balado a échoué
Acheter pour 25,00 $
Aucun mode de paiement valide enregistré.
Nous sommes désolés. Nous ne pouvons vendre ce titre avec ce mode de paiement
Description
Practical Data Science with R lives up to its name. It explains basic principles without the theoretical mumbo-jumbo and jumps right to the real use cases you'll face as you collect, curate, and analyze the data crucial to the success of your business. You'll apply the R programming language and statistical analysis techniques to carefully explained examples based in marketing, business intelligence, and decision support.
Business analysts and developers are increasingly collecting, curating, analyzing, and reporting on crucial business data. The R language and its associated tools provide a straightforward way to tackle day-to-day data science tasks without a lot of academic theory or advanced mathematics.
What's inside
- Data science for the business professional
- Statistical analysis using the R language
- Project lifecycle, from planning to delivery
- Numerous instantly familiar use cases
- Keys to effective data presentations
This book is accessible to listeners without a background in data science. Some familiarity with basic statistics, R, or another scripting language is assumed.
Nina Zumel and John Mount are cofounders of a San Francisco-based data science consulting firm. Both hold PhDs from Carnegie Mellon and blog on statistics, probability, and computer science.
PLEASE NOTE: When you purchase this title, the accompanying PDF will be available in your Audible Library along with the audio.
Ce que les critiques en disent
"A unique and important addition to any data scientist’s library." (Jim Porzak, cofounder, Bay Area R Users Group)
Ce que les auditeurs disent de Practical Data Science with R
Moyenne des évaluations de clientsÉvaluations – Cliquez sur les onglets pour changer la source des évaluations.
-
Au global
-
Performance
-
Histoire
- KM
- 2022-02-02
No chapter/section names.
Why bother even publishing this on Audible if you don't include chapter names. Who thought that was OK? News: it's not OK. It's not just "not OK", it's an insult to both the authors and the readers/listeners. Especially considering how detail oriented the authors clearly are.
Did you simply rip the audio files from Manning, slap some figures into a PDF and throw it up on Audible? Is this even legit? Is money even going to the authors? Are they even aware? It's just so incredibly sloppy that it's hard to believe that someone actually thought this was OK. There's not even a table of contents!?
Un problème est survenu. Veuillez réessayer dans quelques minutes.
Vous avez donné votre avis sur cette évaluation.
Vous avez donné votre avis sur cette évaluation.