Page de couverture de The Equation That Couldn't Be Solved

The Equation That Couldn't Be Solved

How Mathematical Genius Discovered the Language of Symmetry

Aperçu

Essayer pour 0,00 $
Choisissez 1 livre audio par mois dans notre incomparable catalogue.
Écoutez à volonté des milliers de livres audio, de livres originaux et de balados.
L'abonnement Premium Plus se renouvelle automatiquement au tarif de 14,95 $/mois + taxes applicables après 30 jours. Annulation possible à tout moment.

The Equation That Couldn't Be Solved

Auteur(s): Mario Livio
Narrateur(s): Tom Parks
Essayer pour 0,00 $

14,95$ par mois après 30 jours. Annulable en tout temps.

Acheter pour 32,00 $

Acheter pour 32,00 $

Confirmer l'achat
Payer avec la carte finissant par
En confirmant votre achat, vous acceptez les conditions d'utilisation d'Audible et la déclaration de confidentialité d'Amazon. Des taxes peuvent s'appliquer.
Annuler

À propos de cet audio

What do Bach's compositions, Rubik's Cube, the way we choose our mates, and the physics of subatomic particles have in common? All are governed by the laws of symmetry, which elegantly unify scientific and artistic principles. Yet the mathematical language of symmetry - known as group theory - did not emerge from the study of symmetry at all, but from an equation that couldn't be solved.

For thousands of years mathematicians solved progressively more difficult algebraic equations, until they encountered the quintic equation, which resisted solution for three centuries. Working independently, two great prodigies ultimately proved that the quintic cannot be solved by a simple formula. These geniuses, a Norwegian named Niels Henrik Abel and a romantic Frenchman named Évariste Galois, both died tragically young. Their incredible labor, however, produced the origins of group theory.

The first extensive, popular account of the mathematics of symmetry and order, The Equation That Couldn't Be Solved is told not through abstract formulas but in a beautifully written and dramatic account of the lives and work of some of the greatest and most intriguing mathematicians in history.

©2005 Mario Livio. (P)2017 Brilliance Publishing, Inc., all rights reserved.
Mathématique Politique États-Unis Théorie des cordes Mathematical Genius
activate_Holiday_promo_in_buybox_DT_T2

Ce que les auditeurs disent de The Equation That Couldn't Be Solved

Moyenne des évaluations de clients
Au global
  • 4.5 out of 5 stars
  • 5 étoiles
    2
  • 4 étoiles
    0
  • 3 étoiles
    1
  • 2 étoiles
    0
  • 1 étoile
    0
Performance
  • 4 out of 5 stars
  • 5 étoiles
    0
  • 4 étoiles
    1
  • 3 étoiles
    0
  • 2 étoiles
    0
  • 1 étoile
    0
Histoire
  • 5 out of 5 stars
  • 5 étoiles
    1
  • 4 étoiles
    0
  • 3 étoiles
    0
  • 2 étoiles
    0
  • 1 étoile
    0

Évaluations – Cliquez sur les onglets pour changer la source des évaluations.