• ML Infrastructure Without The Ops: Simplifying The ML Developer Experience With Runhouse

  • Nov 11 2024
  • Durée: 1 h et 16 min
  • Podcast

ML Infrastructure Without The Ops: Simplifying The ML Developer Experience With Runhouse

  • Résumé

  • SummaryMachine learning workflows have long been complex and difficult to operationalize. They are often characterized by a period of research, resulting in an artifact that gets passed to another engineer or team to prepare for running in production. The MLOps category of tools have tried to build a new set of utilities to reduce that friction, but have instead introduced a new barrier at the team and organizational level. Donny Greenberg took the lessons that he learned on the PyTorch team at Meta and created Runhouse. In this episode he explains how, by reducing the number of opinions in the framework, he has also reduced the complexity of moving from development to production for ML systems.AnnouncementsHello and welcome to the AI Engineering Podcast, your guide to the fast-moving world of building scalable and maintainable AI systemsYour host is Tobias Macey and today I'm interviewing Donny Greenberg about Runhouse and the current state of ML infrastructureInterviewIntroductionHow did you get involved in machine learning?What are the core elements of infrastructure for ML and AI?How has that changed over the past ~5 years?For the past few years the MLOps and data engineering stacks were built and managed separately. How does the current generation of tools and product requirements influence the present and future approach to those domains?There are numerous projects that aim to bridge the complexity gap in running Python and ML code from your laptop up to distributed compute on clouds (e.g. Ray, Metaflow, Dask, Modin, etc.). How do you view the decision process for teams trying to understand which tool(s) to use for managing their ML/AI developer experience?Can you describe what Runhouse is and the story behind it?What are the core problems that you are working to solve?What are the main personas that you are focusing on? (e.g. data scientists, DevOps, data engineers, etc.)How does Runhouse factor into collaboration across skill sets and teams?Can you describe how Runhouse is implemented?How has the focus on developer experience informed the way that you think about the features and interfaces that you include in Runhouse?How do you think about the role of Runhouse in the integration with the AI/ML and data ecosystem?What does the workflow look like for someone building with Runhouse?What is involved in managing the coordination of compute and data locality to reduce networking costs and latencies?What are the most interesting, innovative, or unexpected ways that you have seen Runhouse used?What are the most interesting, unexpected, or challenging lessons that you have learned while working on Runhouse?When is Runhouse the wrong choice?What do you have planned for the future of Runhouse?What is your vision for the future of infrastructure and developer experience in ML/AI?Contact InfoLinkedInParting QuestionFrom your perspective, what are the biggest gaps in tooling, technology, or training for AI systems today?Closing AnnouncementsThank you for listening! Don't forget to check out our other shows. The Data Engineering Podcast covers the latest on modern data management. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email hosts@aiengineeringpodcast.com with your story.To help other people find the show please leave a review on iTunes and tell your friends and co-workers.LinksRunhouseGitHubPyTorchPodcast.__init__ EpisodeKubernetesBin PackingLinear RegressionGradient Boosted Decision TreeDeep LearningTransformer Architecture)SlurmSagemakerVertex AIMetaflowPodcast.__init__ EpisodeMLFlowDaskData Engineering Podcast EpisodeRayPodcast.__init__ EpisodeSparkDatabricksSnowflakeArgoCDPyTorch DistributedHorovodLlama.cppPrefectData Engineering Podcast EpisodeAirflowOOM == Out of MemoryWeights and BiasesKNativeBERT language modelThe intro and outro music is from Hitman's Lovesong feat. Paola Graziano by The Freak Fandango Orchestra/CC BY-SA 3.0
    Voir plus Voir moins
activate_Holiday_promo_in_buybox_DT_T2

Ce que les auditeurs disent de ML Infrastructure Without The Ops: Simplifying The ML Developer Experience With Runhouse

Moyenne des évaluations de clients

Évaluations – Cliquez sur les onglets pour changer la source des évaluations.