 
                Integral and Differentiation — The fundamental theorem Part 1
Échec de l'ajout au panier.
  
      
      
        
                    
 
  
                        
                
 
  
Veuillez réessayer plus tard
            
                    
                
      
  
            
            
        
Échec de l'ajout à la liste d'envies.
  
      
      
        
                    
 
  
                        
                
 
  
Veuillez réessayer plus tard
            
                    
                
      
  
            
            
        
Échec de la suppression de la liste d’envies.
  
      
      
        
                    
 
  
                        
                
 
  
Veuillez réessayer plus tard
            
                    
                
      
  
            
            
        
Échec du suivi du balado
Ne plus suivre le balado a échoué
- 
    
        
 
	
Narrateur(s):
- 
    
        
 
	
Auteur(s):
À propos de cet audio
In this episode we are studying a first connection of differentiation and integration. More precisely, we will show that if a Riemann integrable function has an anti-derivative then the computation of the integral comes down to the evaluation of the anti-derivative. The proof provided uses a re-interpretation of the mean value theorem. A reorganisation of the terms involved in the statement of the mean value theorem leads to a relation of function evaluation and the integral of a step function with some height given by the derivative at some point of the function. A telescoping sum and a limit argument concludes the proof.
                        
 
  
Pas encore de commentaire
                 
            
         
    
                                                
                                            
                                        
                                    
                            
                            
                        
                    