Having defined the derivative of a function in the previous episode, we now turn to properties of the derivative and of the function in connection to the derivative. This episode is concerned with a first theorem asserting as much, namely Rolle’s theorem. This theorem tells us that the derivative of a differentiable function has a zero as long as it assumes one value twice. A consequence of this will be the mean value theorem, the consequences of which we address in the next episode.
Picture from https://www.flickr.com/photos/11703832@N08/16827652499